Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Environ Toxicol Chem ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563658

RESUMO

The microplastics (MPs) formed by broken plastic film may migrate in the soil under drip irrigation. To investigate the migration distribution of MPs in desert farmland soil under drip irrigation conditions, our study was conducted on farmland in Xinjiang (China). A MP drip irrigation penetration migration testing device was set up in combination with Xinjiang farmland irrigation methods to conduct a migration simulation experiment. The results showed that the migration amount of MPs in soil was significantly positively correlated with the amount of drip irrigation, and significantly negatively correlated with the soil depth; in addition, the relationship between the migration amount of MPs in different types of soil was: clay < sandy loam < sandy soil. Under drip irrigation conditions, the migration rates of MPs were 30.51%, 19.41%, and 10.29% in sandy soil, sandy loam soil, and clay, respectively. The migration ability of these three particle sizes of polyethylene MPs in soil was ranked as follows: 25 to 147 µm > 0 to 25 µm > 147 to 250 µm. When the drip irrigation volume was 2.6 to 3.2 L, horizontal migration distances of MPs exceeded 5 cm, and vertical migration distances reached more than 30 cm. Our findings provide reference data for the study of soil MP migration. Environ Toxicol Chem 2024;00:1-10. © 2024 SETAC.

2.
J Food Sci ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591324

RESUMO

It is crucial to clarify the stability of Kombucha in the manufacture and storage stages due to the extensive study on the fermented products of Kombucha and the increase in the use of bacterial cellulose (BC). This study aimed to evaluate the stability of Kombucha in different manufacturing and storage temperatures within a certain time period. The stability of microorganisms and BC in Kombucha was investigated through regular replacement with the tea media at 28 and 25°C for manufacture, and the storage temperature of Kombucha was at 25, 4, and -20°C. Morphological observations of the BC in Kombucha ended at 28 and 25°C for manufacture and storage were performed using atomic force microscopy (AFM) before inoculation. The viable cell counts and AFM results showed that the stability of Kombucha during manufacture was better at 28°C than at 25°C, with higher microbial viability and BC productivity in the former at the time of manufacture, whereas 25°C was more favorable for the stability of Kombucha during storage. At the same temperature of 25°C, the manufacturing practice improved the microbial viability and BC stability compared with storage; the pH value of Kombucha was lower, and the dry weight of BC was higher during storage compared with manufacture. The maximum BC water holding capacity (97.16%) was maintained by storage at 4°C on day 63, and the maximum BC swelling rate (56.92%) was observed after storage at -20°C on day 7. The research was conducted to provide reference information for applying Kombucha and its BC in food and development in other industries.

3.
Materials (Basel) ; 17(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591587

RESUMO

To explore the crystalline arrangement of the alloy and the processes involving iron (Fe) precipitation, we employed molecular dynamics simulation with a cooling rate of 2 × 1010 for Cu100-XFeX (where X represents 1%, 3%, 5%, and 10%) alloy. The results reveal that when the Fe content was 1%, Fe atoms consistently remained uniformly distributed as the temperature of the alloy decreased. Further, there was no Fe atom aggregation phenomenon. The crystal structure was identified as an FCC-based Cu crystal, and Fe atoms existed in the matrix in solid solution form. When the Fe content was 3%, Fe atoms tended to aggregate with the decreasing temperature of the alloy. Moreover, the proportion of BCC crystal structure exhibited no obvious changes, and the crystal structure remained FCC-based Cu crystal. When the Fe content was between 5% and 10%, the Fe atoms exhibited obvious aggregation with the decreasing temperature of the alloy. At the same time, the aggregation phenomenon was found to be more significant with a higher Fe content. Fe atom precipitation behaviour can be delineated into three distinct stages. The initial stage involves the gradual accumulation of Fe clusters, characterised by a progressively stable cluster size. This phenomenon arises due to the interplay between atomic attraction and the thermal motion of Fe-Fe atoms. In the second stage, small Fe clusters undergo amalgamation and growth. This growth is facilitated by non-diffusive local structural rearrangements of atoms within the alloy. The third and final stage represents a phase of equilibrium where both the size and quantity of Fe clusters remain essentially constant following the crystallisation of the alloy.

4.
Signal Transduct Target Ther ; 9(1): 63, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453934

RESUMO

Neurotransmitter-initiated signaling pathway were reported to play an important role in regulating the malignant phenotype of tumor cells. Cancer cells could exhibit a "neural addiction" property and build up local nerve networks to achieve an enhanced neurotransmitter-initiated signaling through nerve growth factor-mediated axonogenesis. Targeting the dysregulated nervous systems might represent a novel strategy for cancer treatment. However, whether intrahepatic cholangiocarcinoma (ICC) could build its own nerve networks and the role of neurotransmitters in the progression ICC remains largely unknown. Immunofluorescence staining and Enzyme-linked immunosorbent assay suggested that ICC cells and the infiltrated nerves could generate a tumor microenvironment rich in acetylcholine that promotes ICC metastasis by inducing epithelial-mesenchymal transition (EMT). Acetylcholine promoted ICC metastasis through interacting with its receptor, alpha 5 nicotine acetylcholine receptor subunits (CHRNA5). Furthermore, acetylcholine/CHRNA5 axis activated GSK3ß/ß-catenin signaling pathway partially through the influx of Ca2+-mediated activation of Ca/calmodulin-dependent protein kinases (CAMKII). In addition, acetylcholine signaling activation also expanded nerve infiltration through increasing the expression of Brain-Derived Neurotrophic Factor (BDNF), which formed a feedforward acetylcholine-BDNF axis to promote ICC progression. KN93, a small-molecule inhibitor of CAMKII, significantly inhibited the migration and enhanced the sensitivity to gemcitabine of ICC cells. Above all, Acetylcholine/CHRNA5 axis increased the expression of ß-catenin to promote the metastasis and resistance to gemcitabine of ICC via CAMKII/GSK3ß signaling, and the CAMKII inhibitor KN93 may be an effective therapeutic strategy for combating ICC metastasis.


Assuntos
60532 , Benzilaminas , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Nicotina , Acetilcolina , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Gencitabina , Glicogênio Sintase Quinase 3 beta , Linhagem Celular Tumoral , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neurotransmissores , Receptores Colinérgicos , Microambiente Tumoral
5.
Materials (Basel) ; 17(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38473598

RESUMO

Rock fracture is a macroscopic fracturing process resulting from the initiation and propagation of microscopic cracks. Therefore, it is crucial to comprehend the damage and fracture mechanism of rock under ultrasonic vibration by investigating the evolutionary pattern of the meso-pore fracture structure in response to high-frequency vibrational loads, as explored in this study. Standard red sandstone samples with a diameter of 50 mm and height of 100 mm were subjected to ultrasonic high-frequency vibration tests. NMR and CT scans were conducted on the rock samples at different stages of ultrasonic vibration excitation to obtain the corresponding transverse relaxation time (T2) spectra and CT scan images for each layer. The NMR test results revealed that smaller pores formed within the rock under high-frequency vibration loads, with a noticeable expansion observed in micropores. Three-dimensional reconstruction analysis based on two-dimensional CT images demonstrated an increase in pore count by 145.56%, 122.67%, and 98.87%, respectively, for the upper, middle, and lower parts of the rock after 120 s of ultrasonic vibration excitation; furthermore, the maximum pore volume increased by 239.42%, 109.16%, and 18.99%, respectively, for these regions during this period as well. These findings contribute towards a deeper understanding regarding the mechanisms underlying rock fragmentation when exposed to high-frequency vibrational loads.

6.
Nat Commun ; 15(1): 2261, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480720

RESUMO

The occurrence of NAD+ as a non-canonical RNA cap has been demonstrated in diverse organisms. TIR domain-containing proteins present in all kingdoms of life act in defense responses and can have NADase activity that hydrolyzes NAD+. Here, we show that TIR domain-containing proteins from several bacterial and one archaeal species can remove the NAM moiety from NAD-capped RNAs (NAD-RNAs). We demonstrate that the deNAMing activity of AbTir (from Acinetobacter baumannii) on NAD-RNA specifically produces a cyclic ADPR-RNA, which can be further decapped in vitro by known decapping enzymes. Heterologous expression of the wild-type but not a catalytic mutant AbTir in E. coli suppressed cell propagation and reduced the levels of NAD-RNAs from a subset of genes before cellular NAD+ levels are impacted. Collectively, the in vitro and in vivo analyses demonstrate that TIR domain-containing proteins can function as a deNAMing enzyme of NAD-RNAs, raising the possibility of TIR domain proteins acting in gene expression regulation.


Assuntos
Escherichia coli , NAD , NAD/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bactérias/genética , Capuzes de RNA/metabolismo , Receptores de Interleucina-1
7.
Sci Total Environ ; 927: 172039, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552977

RESUMO

Alpine grassland is the main vegetation on the Qinghai-Tibetan Plateau (QTP) and exhibits high sensitivity to extreme weather events. With global warming, extreme weather events are projected to become more frequent on the QTP. However, the impact of these extreme weather events on the carbon cycle of alpine grassland remains unclear. The long-term in-situ carbon fluxes data was collected from 2013 to 2022 at an alpine grassland site to examine the impact of extreme low air temperature (ELT) and reduced moisture (including air and soil) on carbon fluxes during the growing season. Our findings indicated that a significant increase in net ecosystem production (NEP) after 2019, with the average NEP increasing from 278.91 ± 43.27 g C m-2 year-1 during 2013-2018 to 415.45 ± 45.29 g C m-2 year-1 during 2019-2022. The ecosystem carbon use efficiency (CUE) increased from 0.38 ± 0.06 during 2013-2018 to 0.62 ± 0.11 during 2019-2022. By combining concurrently measured environmental factors and remote sensing data, we identified the factors responsible for the abrupt change in the NEP after 2019. This phenomenon was caused by an abrupt decrease in ecosystem respiration (Reco) after 2019, which resulted from the inhibition imposed by ELT and reduced moisture. In contrast, gross primary production (GPP) remained stable from 2013 to 2022, which was confirmed by the remotely sensed vegetation index. This study highlights that combined extreme weather events associated with climate change can significantly impact the NEP of alpine grassland, potentially affecting different carbon fluxes at different rates. These findings provide new insights into the mechanisms governing the carbon cycle of alpine grassland.


Assuntos
Ciclo do Carbono , Monitoramento Ambiental , Pradaria , Tibet , Mudança Climática , Temperatura Baixa , Ecossistema
8.
Acta Pharm Sin B ; 14(3): 1302-1316, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38487000

RESUMO

Pancreatic cancer, one of the most aggressive malignancies, has no effective treatment due to the lack of targets and drugs related to tumour metastasis. SIRT6 can promote the migration of pancreatic cancer and could be a potential target for antimetastasis of pancreatic cancer. However, highly selective and potency SIRT6 inhibitor that can be used in vivo is yet to be discovered. Here, we developed a novel SIRT6 allosteric inhibitor, compound 11e, with maximal inhibitory potency and an IC50 value of 0.98 ± 0.13 µmol/L. Moreover, compound 11e exhibited significant selectivity against other histone deacetylases (HADC1‒11 and SIRT1‒3) at concentrations up to 100 µmol/L. The allosteric site and the molecular mechanism of inhibition were extensively elucidated by cocrystal complex structure and dynamic structural analyses. Importantly, we confirmed the antimetastatic function of such inhibitors in four pancreatic cancer cell lines as well as in two mouse models of pancreatic cancer liver metastasis. To our knowledge, this is the first study to reveal the in vivo effects of SIRT6 inhibitors on liver metastatic pancreatic cancer. It not only provides a promising lead compound for subsequent inhibitor development targeting SIRT6 but also provides a potential approach to address the challenge of metastasis in pancreatic cancer.

9.
J Hazard Mater ; 466: 133648, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38306835

RESUMO

The precise identification viable pathogens hold paramount significance in the prevention of foodborne diseases outbreaks. In this study, we integrated machine vision and learning with single microsphere to develop a phage and Clostridium butyricum Argonaute (CbAgo)-mediated fluorescence biosensor for detecting viable Salmonella typhimurium (S. typhimurium) without convoluted DNA extraction and amplification procedures. Phage and lysis buffer was utilized to capture and lyse viable S. typhimurium, respectively. Subsequently, CbAgo can cleave the bacterial DNA to obtain target DNA that guides a newly targeted cleavage of fluorescent probes. After that, the resulting fluorescent signal accumulates on the streptavidin-modified single microsphere. The overall detection process is then analyzed and interpreted by machine vision and learning algorithms, achieving highly sensitive detection of S. typhimurium with a limit of detection at 40.5 CFU/mL and a linear range of 50-107 CFU/mL. Furthermore, the proposed biosensor demonstrates standard recovery rates and coefficients of variation at 93.22% - 106.02% and 1.47% - 12.75%, respectively. This biosensor exhibits exceptional sensitivity and selectivity, presenting a promising method for the rapid and effective detection of foodborne pathogens. ENVIRONMENTAL IMPLICATION: Bacterial pathogens exist widely in the environment and seriously threaten the safety of human life. In this study, we developed a phage and Clostridium butyricum Argonaute-mediated fluorescence biosensor for the detection of viable Salmonella typhimurium in environmental water and food samples. Compared with other Salmonella detection methods, this method does not need complex DNA extraction and amplification steps, which reduces the use of chemical reagents and experimental consumables in classic DNA extraction kit methods.


Assuntos
Técnicas Biossensoriais , Humanos , Técnicas Biossensoriais/métodos , Salmonella typhimurium/genética , Alimentos , DNA , DNA Bacteriano/genética
10.
Exp Hematol Oncol ; 13(1): 20, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388466

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is closely associatedwith chronic liver diseases, particularly liver cirrhosis, which has an altered extracellular matrix (ECM) composition. The influence and its mechanism of the cirrhotic-ECM on the response of HCC to immune checkpoint inhibitor (ICI) remains less clarified. METHODS: In silico, proteomic and pathological assessment of alteration of cirrhotic-ECM were applied in clinical cohort. Multiple pre-clinical models with ECM manipulation were used to evaluate cirrhotic-ECM's effect on ICI treatment. In silico, flow cytometry and IHC were applied to explore how cirrhotic-ECM affect HCC microenvironment. In vitro and in vivo experiments were carried out to identify the mechanism of how cirrhotic-ECM undermined ICI treatment. RESULTS: We defined "a pro-tumor cirrhotic-ECM" which was featured as the up-regulation of collagen type 1 (Col1). Cirrhotic-ECM/Col1 was closely related to impaired T cell function and limited anti PD-1 (aPD-1) response of HCC patients from the TCGA pan cancer cohort and the authors' institution, as well as in multiple pre-clinical models. Mechanically, cirrhotic-ECM/Col1 orchestrated an immunosuppressive microenvironment (TME) by triggering Col1-DDR1-NFκB-CXCL8 axis, which initiated neutrophil extracellular traps (NETs) formation to shield HCC cells from attacking T cells and impede approaching T cells. Nilotinib, an inhibitor of DDR1, reversed the neutrophils/NETs dominant TME and efficiently enhanced the response of HCC to aPD-1. CONCLUSIONS: Cirrhotic-ECM modulated a NETs enriched TME in HCC, produced an immune suppressive TME and weakened ICI efficiency. Col1 receptor DDR1 could be a potential target synergically used with ICI to overcome ECM mediated ICI resistance. These provide a mechanical insight and novel strategy to overcome the ICI resistance of HCC.

11.
Cell Rep Med ; 5(2): 101415, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38382467

RESUMO

Immune checkpoint inhibitors, particularly PD-1/PD-L1 blockades, have been approved for unresectable hepatocellular carcinoma (HCC). However, high resistance rates still limit their efficacy, highlighting the urgent need to understand the underlying mechanisms and develop strategies for overcoming the resistance. In this study, we demonstrate that HCC with high MER proto-oncogene tyrosine kinase (MerTK) expression exhibits anti-PD-1/PD-L1 resistance in two syngeneic mouse models and in patients who received anti-PD-1/PD-L1 therapy. Mechanistically, MerTK renders HCC resistant to anti-PD-1/PD-L1 by limiting ferroptosis with the upregulation of SLC7A11 via the ERK/SP1 pathway and facilitating the development of an immunosuppressive tumor microenvironment (TME) with the recruitment of myeloid-derived suppressor cells (MDSCs). Sitravatinib, an inhibitor of MerTK, sensitizes resistant HCC to anti-PD-L1 therapy by promoting tumor ferroptosis and decreasing MDSC infiltration into the TME. In conclusion, we find that MerTK could serve as a predictive biomarker for patient stratification and as a promising target to overcome anti-PD-1/PD-L1 resistance in HCC.


Assuntos
Carcinoma Hepatocelular , Ferroptose , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1 , c-Mer Tirosina Quinase/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Imunidade , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Microambiente Tumoral
12.
Front Surg ; 11: 1325483, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38293649

RESUMO

Objective: To investigate the early effect of high tibial osteotomy (HTO) compared with combined arthroscopic surgery. Methods: A retrospective study was conducted on patients who underwent HTO at The First Affiliated Hospital of Shandong First Medical University from January 2018 to January 2022. 138 patients (163 knees) with knee osteoarthritis (KOA) treated with HTO were selected. The medial proximal tibial angle (MPTA), joint line convergence angle (JLCA), femoral tibial angle (FTA), hip-knee-ankle (HKA) angle, weight-bearing line (WBL) ratio of the knee joint, opening gap, opening angle, American Knee Society score (KSS), US Hospital for Special Surgery (HSS) score, and Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) score were measured to determine the different effects between HTO and HTO combined with arthroscopic by logistic regression analysis. Results: Patients with HTO combined with arthroscopic surgery have improved functional scores as well as imaging perspectives compared to preoperative. By multivariate logistic analysis, it was concluded that arthroscopic surgery and gender are influential factors in the outcome of HTO surgery. The postoperative KSS score was 2.702 times more likely to be classified as excellent in the HTO combined with arthroscopy group than in the HTO group [Exp (ß) = 2.702, 95% CI (1.049-6.961), P = 0.039]; the postoperative KSS score was 0.349 times more likely to be classified as excellent in women than in men [Exp (ß) = 0.349, 95% CI (0.138-0.883), P = 0.026]. Conclusion: Better results with HTO combined with arthroscopic surgery. HTO combined with arthroscopy is a better choice in the surgical treatment of KOA.

13.
Food Chem ; 442: 138484, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271913

RESUMO

Transglutaminase (TGase) induced-crosslinking of soy protein isolate (SPI) was markedly influenced by the substrate aggregation state. Results showed that appropriate heating significantly accelerated the TGase crosslinking, and the 7S and 11S acidic subunits were more susceptible to the enzyme than the 11S basic proteins. The content of ε-(γ-glutamyl)-lysine isopeptide bonds increased from 4.74 to 8.61 µmol/g protein when the heating intensity was increased from 75 °C for 15 min to 95 °C for 30 min, due to sufficient unfolding of the protein structure. Rheological data indicated that the gel formed from the SPI heated at 95 °C for 30 min exhibited the best properties, with a 60 % increase in the storage modulus compared with the unheated sample. However, excessive heating (95 °C, 60-120 min) caused severe aggregation of SPI and formation of insoluble aggregates, resulting in poor crosslinking efficiency and weaker gel properties.


Assuntos
Proteínas de Soja , Transglutaminases , Proteínas de Soja/química , Solubilidade , Transglutaminases/metabolismo
14.
Biosens Bioelectron ; 248: 115992, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38184942

RESUMO

Aflatoxin B1 (AFB1) is one of the most prevalent and dangerous biotoxin in crops and feedstuff, which poses a great threat to human health and also cause significant financial losses. Therefore, there is an urgent need to develop an effective method for AFB1 detection. In this work, we developed an automatic reaction equipment and nanozyme-enhanced immunosorbent assay (Auto-NEISA) for sensitive and accurate detection of AFB1 by combining the highly effective signal probes with a self-designed automated immunoreactive equipment. Wherein, polystyrene (PS) nanoparticles were used as signal carriers for loading a massive in situ-synthesized platinum and palladium bimetallic nanozyme, which could enrich horseradish peroxidase-labeled goat anti-mouse antibody (HRP-Ab2) on the nanozyme surface to form a bimetallic nanozyme-bioenzyme hybrid material for multiple signal amplification. The entire reaction could be automatically completed by the self-developed immunoreactive equipment. The Auto-NEISA method realized the sensitive detection of AFB1 with a wide linear detection range of 10-104 pg/mL, at a low limit of detection (LOD) of 5.52 pg/mL. The LOD was 65-fold lower than that of the enzyme-linked immunosorbent assay (ELISA). Additionally, Auto-NEISA was successfully applied to detect AFB1 in real food samples, demonstrating that it has considerable potential for detecting food contaminants with high accuracy and efficiency.


Assuntos
Aflatoxina B1 , Técnicas Biossensoriais , Humanos , Aflatoxina B1/análise , Imunoensaio/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Alimentos , Limite de Detecção
15.
Int J Biol Macromol ; 259(Pt 2): 129369, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218271

RESUMO

The impact of the cell wall structure of Monascus purpureus M9 on the secretion of extracellular monascus pigments (exMPs) was investigated. To modify the cell wall structure, UDP-galactopyranose mutase (GlfA) was knocked out using Agrobacterium-mediated transformation method, leading to a significant reduction in the Galf-based polysaccharide within the cell wall. Changes in mycelium morphology, sporogenesis, and the expression of relevant genes in M9 were also observed following the mutation. Regarding MPs secretion, a notable increase was observed in six types of exMPs (R1, R2, Y1, Y2, O1 and O2). Specifically, these exMPs exhibited enhancement of 1.33, 1.59, 0.8, 2.45, 2.89 and 4.03 times, respectively, compared to the wild-type strain. These findings suggest that the alteration of the cell wall structure could selectively influence the secretion of MPs in M9. The underlying mechanisms were also discussed. This research contributes new insights into the regulation of the synthesis and secretion of MPs in Monascus spp..


Assuntos
Galactose/análogos & derivados , Transferases Intramoleculares , Mananas , Monascus , Monascus/genética , Monascus/metabolismo , Pigmentos Biológicos , Metabolismo dos Carboidratos , Fermentação
16.
RSC Adv ; 13(45): 31632-31640, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37908666

RESUMO

The use of TADF materials as both sensitizers and emitters is a promising route to achieve high-efficiency all-fluorescent white organic light-emitting diodes (WOLEDs). In this study, the thermally-activated delayed-fluorescent (TADF) material DMAC-TRZ (9,9-dimethyl-9,10-dihydroacridine-2,4,6-triphenyl-1,3,5-triazine) was selected as a sensitizer for the conventional fluorescent emitter DCJTB (4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran), which was co-doped in a wide bandgap host of DPEPO (bis[2-(diphenylphosphino)phenyl]ether oxide) to fabricate WOLEDs. For the emitting layer of DPEPO:DMAC-TRZ:DCJTB, the DPEPO host can dilute the exciton concentration formed on the DMAC-TRZ sensitizer, which benefits the suppression of exciton quenching. The effect of the doping concentration of DCJTB on the carrier recombination and energy transfer process was investigated. With an optimized doping concentration of DCJTB as 0.8%, highly efficient WOLED was achieved with a maximum external quantum efficiency (EQE), power efficiency (PE), and current efficiency (CE) of 11.05%, 20.83 lm W-1, and 28.83 cd A-1, respectively, corresponding to the Commission Internationale de I' Eclairage (CIE) coordinates of (0.45, 0.46). These superior performances can be ascribed to the fact that the hole-trapping effect of the emitter and Dexter energy transfer (DET) from sensitizer to emitter can be suppressed simultaneously by the extremely low doping concentration.

17.
PNAS Nexus ; 2(9): pgad308, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37780232

RESUMO

The northern hemisphere has experienced regional cooling, especially during the global warming hiatus (1998-2012) due to ocean energy redistribution. However, the lack of studies about the natural cooling effects hampers our understanding of vegetation responses to climate change. Using 15,125 ground phenological time series at 3,620 sites since the 1950s and 31-year satellite greenness observations (1982-2012) covering the warming hiatus period, we show a stronger response of leaf onset date (LOD) to natural cooling than to warming, i.e. the delay of LOD caused by 1°C cooling is larger than the advance of LOD with 1°C warming. This might be because cooling leads to larger chilling accumulation and heating requirements for leaf onset, but this non-symmetric LOD response is partially offset by warming-related drying. Moreover, spring greening magnitude, in terms of satellite-based greenness and productivity, is more sensitive to LOD changes in the warming area than in the cooling. These results highlight the importance of considering non-symmetric responses of spring greening to warming and cooling when predicting vegetation-climate feedbacks.

18.
Sci Rep ; 13(1): 16948, 2023 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-37805608

RESUMO

The old drip irrigation belts in Xinjiang cotton fields are prone to damage and have low recovering efficiency when being mechanically recovered, as well as poor mechanical performance and short service life of the old materials used in the production of various new products. Therefore, experiments were carried out from the macroscopic mechanical properties and microscopic chemical composition changes of the old drip irrigation belt to explore how the changes in its mechanical and chemical properties affect the recovery and recycling of the old drip irrigation belt. Mechanical properties of the old drip irrigation belts were tested by statics and dynamics test methods. The experiment results of indicators about mechanical properties showed that the tensile strength, elongation at break, natural rebound rate, impact strength and other mechanical parameters of the old drip irrigation belt samples were significantly lower than the corresponding values of the new ones. Which will affect the tensile capacity of the drip irrigation belt when it is recovered in the field. Furthermore, X-ray energy spectrum and infrared spectrum methods were used to analyse the chemical composition changes of the old drip irrigation belt. The determination results of X-ray energy spectrum showed that the oxygen content of the new drip irrigation belt samples was 1.73%, while that of old drip irrigation belt samples reached 12.15% ~ 15.27%. Then, the infrared spectrum experiment results showed that there were significantly more carbon groups in the old drip irrigation belt samples than that in the new ones. In addition, the correlation between the mechanical properties and oxidation degree of drip irrigation belt samples was analyzed, results showed that there was a significant negative correlation between them. This study results can provide basic data and theoretical guidance for the research and development of drip irrigation belt recovery equipment in Xinjiang cotton field, the research of rapid detection method of drip irrigation belt aging, the manufacture of anti-aging drip irrigation belt and the cyclic utilization of old materials.

19.
Free Radic Biol Med ; 208: 545-554, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37717794

RESUMO

BACKGROUND: Mitochondrial dysfunction and subsequent cardiomyocyte apoptosis significantly contribute to pressure overload-induced heart failure (HF). A highly oxidative environment leads to mitochondrial damage, further exacerbating this condition. Asiatic acid (AA), a proven antioxidant and anti-hypertrophic agent, might provide a solution, but its role and mechanisms in chronic pressure overload-induced HF remain largely unexplored. METHODS: We induced pressure overload in mice using transverse aortic constriction (TAC) and treated them with AA (100 mg/kg/day) or vehicle daily by oral gavage for 8 weeks. The effects of AA on mitochondrial dysfunction, oxidative stress-associated signaling pathways, and overall survival were evaluated. Additionally, an in vitro model using hydrogen peroxide-exposed neonatal rat cardiomyocytes was established to further investigate the role of AA in oxidative stress-induced mitochondrial apoptosis. RESULTS: AA treatment significantly improved survival and alleviated cardiac dysfunction in TAC-induced HF mice. It preserved mitochondrial structure, reduced the LVW/BW ratio by 20.24%, mitigated TAC-induced mitochondrial-dependent apoptosis by significantly lowering the Bax/Bcl-2 ratio and cleaved caspase-9/3 levels, and attenuated oxidative stress. AA treatment protected cardiomyocytes from hydrogen peroxide-induced apoptosis, with concurrent modulation of mitochondrial-dependent apoptosis pathway-related proteins and the JNK pathway. CONCLUSIONS: Our findings suggest that AA effectively combats chronic TAC-induced and hydrogen peroxide-induced cardiomyocyte apoptosis through a mitochondria-dependent mechanism. AA reduces cellular levels of oxidative stress and inhibits the activation of the JNK pathway, highlighting its potential therapeutic value in the treatment of HF.


Assuntos
Insuficiência Cardíaca , Peróxido de Hidrogênio , Camundongos , Ratos , Animais , Peróxido de Hidrogênio/metabolismo , Insuficiência Cardíaca/metabolismo , Apoptose , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
20.
Biomimetics (Basel) ; 8(5)2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37754194

RESUMO

As an important branch of robotics, soft robots have the advantages of strong flexibility, a simple structure, and high safety. These characteristics enable soft robots to be widely used in various fields such as biomedicine, military reconnaissance, and micro space exploration. However, contemporary soft crawling robots still face problems such as the single drive mode and complex external equipment. In this study, we propose an innovative design of an inchworm-like soft crawling robot utilizing the synergistic interaction of electricity and moisture for its hybrid dual-drive locomotion. The legs of the soft robot are mainly made of GO-CNT/PE composite film, which can convert its own volume expansion into a corresponding bending motion after being stimulated by electricity or moisture. Unlike other drive methods, it requires less power and precision from external devices. The combination of the two driving methods greatly improves the environmental adaptability of the soft robot, and we developed visible light as the driving method on the basis of the dual drive. Finally, we also verified the robot's excellent load capacity, climbing ability, and optical drive effect, which laid the foundation for the application of soft robots in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...